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A simple data assimilation method for improving the
MODIS LAI time-series data products based on the
object analysis and gradient inverse weighted filter
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A simple data assimilation method for improving estimation of moderate resolution imaging spectrora-
diometer (MODIS) leaf area index (LAI) time-series data products based on the gradient inverse weighted
filter and object analysis is proposed. The properties and quality control (QC) of MODIS LAI data
products are introduced. Also, the gradient inverse weighted filter and object analysis are analyzed. An
experiment based on the simple data assimilation method is performed using MODIS LAI data sets from
2000 to 2005 of Guizhou Province in China.
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Leaf area index (LAI) is an important parameter for
describing vegetation canopy structure in the terrestrial
ecosystem on the global, continental, and regional scales.
Although the moderate resolution imaging spectrora-
diometer (MODIS) LAI data products have been suc-
cessfully used in research regarding global environment
change, crop growth estimation and so on, residual noise
in the MODIS LAI time-series data, even after applying
strict pre-processing, impedes further analysis and risks
generating erroneous results. There are several generic
issues that affect the quality of MODIS LAI[1]. Firstly,
estimating LAI from one satellite instrument MODIS is
an ill-posed inversion problem because the number of un-
knowns is always larger than the available bands, due
to the nature of the earth’s complex environment. Fur-
thermore, most MODIS LAI data products are not con-
tinuous in both space and time because of a variety of
reasons, e.g., cloud contamination, insufficient number
of data points for retrieval. As a result, MODIS LAI
products need significant improvements. For this reason,
some methods for reducing noise and constructing high-
quality MODIS time-series data sets for further analysis
have been formulated, applied, and evaluated[1−4]. Fur-
thermore, some methods have also been used to improve
other time-series remote sensing data quality[5−9].

Quality control (QC) information of MODIS LAI prod-
uct is represented by two data layers (FparLai QC and
FparExtra QC) in the file with MOD15A2 product. QC
measures are produced at the file (containing one MODIS
tile) and at the pixel level for the MOD15A2 product.
The LAI/fraction of photosynthetically active radiation
(FPAR) algorithm is executed irrespective of input qual-
ity. Therefore user should consult the QC layers of the
LAI/FPAR product to select reliable retrievals. The key
indicator of retrieval quality of the LAI/FPAR product
is SCF QC bitfield. In this paper, a simple data as-
similation method for improving estimation of MODIS
LAI time-series data products based on the gradient in-
verse weighted filter and object analysis coupling quality
control information of MODIS LAI product is proposed.

Meanwhile, an experiment based on the simple data as-
similation method is performed using MODIS LAI data
sets from 2000 to 2005 of Guizhou Province in China.

Gradient weighted smoothing filters are locally adap-
tive weighted mean filters[10]. Smoothing filter design in
image processing basically depends on the types of noise.
Rank order based filters such as median filters are good
at removing additive impulsive noise and linear filters
are good at suppressing Gaussian noise. However, most
of them suffer from the trade-off between removing noise
and preserving details. Moreover, as the types and the
amount of noise are mixed diversely, noise removal con-
tinues to provide a challenge to smoothing filter design-
ers. Weighted mean filters are commonly used spatial
filters based on the local intensity information directly.
They replace the intensity of the pixel to be processed by
the weighted average of the intensities of its neighbors.
One major drawback of these filters is that they will blur
the sharpness of edges. Adaptive weighted filters are
then proposed to avoid this drawback. Most of them are
based on local gradient information. Examples of such
gradient-based filters include gradient inverse weighted
filters, sigma filters, adaptive Gaussian weighted filters,
and rational filters. The smoothing scheme of the gra-
dient inverse weighted filters is based on the observa-
tion that the variations of grey levels inside a region are
smaller than those between regions[10]. In other words,
the absolute value of gradient at the edge is higher than
that within the regions. The weighting coefficients are
the normalized gradient inverses between the center point
and its neighbours. Its basic principle is as follows[10].

For a 3 × 3 windows, suppose that the grey value of
point (x, y) is f(x, y). The inverse of absolute gradient
at (x, y) is

g(x, y; i, j) =
1

|f(x + i, y + j) − f(x, y)| , (1)

where i, j = −1, 0, 1, but i and j are not equal to zero at
the same time.

If f(x+ i, y+j) = f(x, y), the gradient is equal to zero.
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Then define g(x, y; i, j) = 2. So the scope of g(x, y; i, j)
is [0, 2]. The normalized weight matrix W of smoothing
is

W =

[
w(x − 1, y − 1) w(x − 1, y) w(x − 1, y + 1)
w(x, y − 1) w(x, y) w(x, y + 1)
w(x + 1, y − 1) w(x + 1, y) w(x + 1, y + 1)

]
,

(2)

generally, the coefficient value of central elements is 1/2,
the sum of other elements is 1/2. So besides f(x, y), other
elements of W are computed as

w(x + i, y + j) =
1
2
∗ g(x, y, i, j)∑

i

∑
j

g(x, y, i, j)
, (3)

where i, j = −1, 0, 1, but i and j are not equal to zero at
the same time.

The smoothed pixel (x, y) is computed as

G(x, y) =
∑

i

∑
j

w(x + i, y + j)f(x + i, y + j), (4)

where i, j = −1, 0, 1, but i and j are not equal to zero at
the same time.

In this paper, based on the QC information of MODIS
LAI product and gradient inverse weighted filter, a sim-
ple data assimilation method named objective analysis
is adopted, which sets observed values as the values of
the model variables at the observation location[2]. The
values of the model variables at other locations are inter-
polated. We denote xb by the first guess of the model
state (background), and by x0(rj), j = 1, 2, · · · , n, a set
of observations of the same parameter, where r defines
the spatial location in a one-, two- or three-dimensional
domain[2]. The model state xa defined at each gridpoint
i can be determined by

xa(ri) = xb(ri) +

n∑
j=1

w(ri, rj)[x0(rj) − xb(rj)]

n∑
j=1

w(ri, rj)
, (5)

where w(ri, rj) is the weighting function dependent on
the distance di,j between points ri and rj , R the distance
constant. In following experiments, R = 2.0.

w(ri, rj) = max

(
0,

R2 − d2
i,j

R2 + d2
i,j

)
. (6)

The simple data assimilation method and algorithm is
shown in Fig. 1.

Based on the methodology described in Fig. 1, an ex-
periment is performed using MODIS LAI data products
from 2000 to 2005 of Guizhou Province in China. Figure
2 is MODIS/Terra land cover types (plant functional
types, PFT) over the Guizhou Province of China, which
indicates that most of land cover types are trees (ever-
green needleleaf trees, evergreen broadleaf trees, decid-
uous needleleaf trees, deciduous broadleaf trees), shrub,
grass and crop (cereal crop, broadleaf crop), whereas ur-
ban and built up, barren or sparse vegetations are very

Fig. 1. Flowchart of data assimilation for MODIS LAI.

Fig. 2. MODIS/Terra land cover type PFT over the Guizhou
Province of China.

Fig. 3. Original MODIS LAI data products over the Guizhou
Province of China on day 169 and 265 in 2004.

little. Figure 3 is original MODIS LAI data products
(MOD15A2) over Guizhou Province of China on day
169 and 265 in 2004, which indicate that the LAI in
most of areas is very little. Figure 4 is the QC data
of MODIS LAI over Guizhou Province of China on day
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Fig. 4. QC data of MODIS LAI over the Guizhou Province
of China on day 169 and 265 in 2004.

Fig. 5. Improved MODIS LAI data products over the
Guizhou Province of China on day 169 and 265 in 2004.

169 and 265 in 2004, which indicates that the quality
of most areas is very poor due to cloud contamination.
Figure 5 shows the corresponding improved results of
MODIS LAI data products based on the simple data as-
similation method, which indicates that the low quality
MODIS raw LAI data are greatly improved.

In summary, we propose a new approach to improve
MODIS LAI time-series data products. The method is
very suitable for improving estimation of MODIS time-
series data products mainly due to cloud contamination
and three types of data, including MODIS time-series
data products and its QC data, land cover types data,
are needed. In order to improve the quality of MODIS

time-series data products utterly, the coupling remote
sensing observation and growth model for improving the
MODIS time-series data products is our following task.
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